7 resultados para bacterial pathogenesis

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crohn’s disease (CD) is a chronic, relapsing inflammatory condition affecting the gastrointestinal tract of humans, of which there is currently no cure. The precise etiology of CD is unknown, although it has become widely accepted that it is a multifactorial disease which occurs as a result of an abnormal immune response to commensal enteric bacteria in a genetically susceptible host. Recent studies have shown that a new group of Escherichia coli, called Adherent Invasive Escherichia coli (AIEC) are present in the guts of CD patients at a higher frequency than in healthy subjects, suggesting that they may play a role in the initiation and/or maintenance of the inflammation associated with CD. Two phenotypes define an AIEC and differentiate them from other groups of E. coli. Firstly, AIEC can adhere to and invade epithelial cells; and secondly, they can replicate in macrophages. In this study, we use a strain of AIEC which has been isolated from the colonic mucosa of a CD patient, called HM605, to examine the relationship between AIEC and the macrophage. We show, using a systematic mutational approach, that while the Tricarboxylic acid (TCA) cycle, the glyoxylate pathway, the Entner-Doudoroff (ED) pathway, the Pentose Phosphate (PP) pathway and gluconeogenesis are dispensable for the intramacrophagic growth of HM605, glycolysis is an absolute requirement for the ability of this organism to replicate intracellularly. We also show that HM605 activates the inflammasome, a major driver of inflammation in mammals. Specifically, we show that macrophages infected with HM605 produce significantly higher levels of the pro-inflammatory cytokine IL-1β than macrophages infected with a non-AIEC strain, and we show by immunoblotting that this is due to cleavage of caspase-1. We also show that macrophages infected with HM605 exhibit significantly higher levels of pyroptosis, a form of inflammatory cell death, than macrophages infected with a non-AIEC strain. Therefore, AIEC strains are more pro-inflammatory than non-AIEC strains and this may have important consequences in terms of CD pathology. Moreover, we show that while inflammasome activation by HM605 is independent of intracellular bacterial replication, it is dependent on an active bacterial metabolism. Through the establishment of a genetic screen aimed at identifying mutants which activate the inflammasome to lower levels than the wild-type, we confirm our observation that bacterial metabolism is essential for successful inflammasome activation by HM605 and we also uncover new systems/structures that may be important for inflammasome activation, such as the BasS/BasR two-component system, a type VI secretion system and a K1 capsule. Finally, in this study, we also identify a putative small RNA in AIEC strain LF82, which may be involved in modulating the motility of this strain. Overall this works shows that, in the absence of specialised virulence factors, the ability of AIEC to metabolise within the host cell may be a key determinant of its pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally, agriculture is being intensified with mechanization and increased use of synthetic fertilizers and pesticides. There has been a scaling up of production to satisfy the demands of supermarket distribution. Problems associated with intensification of production, trade globalisation and a larger market demand for greater volumes of fresh produce, include consumers' concern about pesticide residues and leaching of nutrients and pesticides into the environment, as well as increases in the transmission of human food-poisoning pathogens on raw vegetables and in fruit juices. The first part of this research was concerned with the evaluation of a biological control strategy for soil-borne pathogens, these are difficult to eliminate and the chemicals of which the most effective fumigants e.g. methyl bromide, are being withdrawn form use. Chitin-containing crustaceans shellfish waste was investigated as a selective growth substrate amendment in the field, in glasshouse and in storage trials against Sclerotinia disease of Helianthus tuberosus, Phytophthora fragariae disease of Fragaria vesca and Fusarium disease of Dianthus. Results showed that addition to shellfish waste stimulated substrate microbial populations and lytic activity and induced plant defense proteins, namely chitinases and cellulases. Protective effects were seen in all crop models but the results indicate that further trials are required to confirm long-term efficacy. The second part of the research investigated the persistence of enteric bacteria in raw salad vegetables using model food poisoning isolates. In clinical investigations plants are sampled for bacterial contamination but no attempt is made to differentiate between epiphytes and endophytes. Results here indicate that the mode isolates persist endophytically thereby escaping conventional chlorine washes and they may also induce host defenses, which results in their suppression and in negative results in conventional plate count screening. Finally a discussion of criteria that should be considered for a HACCP plan for safe raw salad vegetable production is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of the Gram-positive foodborne pathogen Listeria monocytogenes to survive and grow in environments of elevated osmolarity can be attributed, at least in part, to the accumulation of a restricted range of low molecular mass solutes compatible with cellular function. Accumulated to high internal concentrations in hyper-saline environments, compatible solutes, either transported into the cell or synthesized de novo, play a dual role: helping to stabilize protein structure and function while also counterbalancing external osmotic strength, thus preventing water loss from the cell and plasmolysis. While previous physiological investigations identified glycine betaine, carnitine, and proline as the principal compatible solutes in the listerial osmostress response, genetic alanysis of the uptake/synthesis systems governing the accumulation of these compounds has, until now, remained largely unexplored. Representing the first genetic analysis of compatible solute accumulation in L. monocytogenes, this thesis describes the molecular characterization of BetL; a highly specific secondary glycine betaine transport system, OpuC; a multicomponent carnitine/glycine betaine transporter, and finally proBA; a two-gene operon encoding the first two enzymes of the listerial proline piosynthesis pathway. In addition to their role in osmotolerance, the potential of each system in contributing to listerial pathogenesis was investigated. While mutations in each gene cluster exhibited dramatic reductions in listerial osmotolerance, OpuC- mutants were additionally shown to exhibit reduced virulence when admisistered via the oral route. This represents the first direct link between the salt stress response and virulence in L. monocytogenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer represents a leading of cause of death in the developed world, inflicting tremendous suffering and plundering billions from health budgets. The traditional treatment approaches of surgery, radiotherapy and chemotherapy have achieved little in terms of cure for this deadly disease. Instead, life is prolonged for many, with dubious quality of life, only for disease to reappear with the inevitable fatal outcome. “Blue sky” thinking is required to tackle this disease and improve outcomes. The realisation and acceptance of the intrinsic role of the immune system in cancer pathogenesis, pathophysiology and treatment represented such a “blue sky” thought. Moreover, the embracement of immunotherapy, the concept of targeting immune cells rather than the tumour cells themselves, represents a paradigm shift in the approach to cancer therapy. The harnessing of immunotherapy demands radical and innovative therapeutic endeavours – endeavours such as gene and cell therapies and RNA interference, which two decades ago existed as mere concepts. This thesis straddles the frontiers of fundamental tumour immunobiology and novel therapeutic discovery, design and delivery. The work undertaken focused on two distinct immune cell populations known to undermine the immune response to cancer – suppressive T cells and macrophages. Novel RNAi mediators were designed, validated and incorporated into clinically relevant gene therapy vectors – involving a traditional lentiviral vector approach, and a novel bacterial vector strategy. Chapter 2 deals with the design of novel RNAi mediators against FOXP3 – a crucial regulator of the immunosuppressive regulatory T cell population. Two mediators were tested and validated. The superior mediator was taken forward as part of work in chapter 3. Chapter 3 deals with transposing the RNA sequence from chapter 2 into a DNA-based construct and subsequent incorporation into a lentiviral-based vector system. The lentiviral vector was shown to mediate gene delivery in vitro and functional RNAi was achieved against FOXP3. Proof of gene delivery was further confirmed in vivo in tumour-bearing animals. Chapter 4 focuses on a different immune cell population – tumour-associated macrophages. Non-invasive bacteria were explored as a specific means of delivering gene therapy to this phagocytic cell type. Proof of delivery was shown in vitro and in vivo. Moreover, in vivo delivery of a gene by this method achieved the desired immune response in terms of cytokine profile. Overall, the data presented here advance exploration within the field of cancer immunotherapy, introduce novel delivery and therapeutic strategies, and demonstrate pre-clinically the potential for such novel anti-cancer therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing appreciation of the polymicrobial nature of bacterial infections associated with Cystic Fibrosis (CF) and of the important role for interactions in influencing bacterial virulence and response to therapy. Patients with CF are co-infected with Pseudomonas aeruginosa, Burkholderia cenocepacia and Stenotrophomonas maltophilia. These latter bacteria produce signal molecules of the diffusible signal factor (DSF) family, which are cis-2-unsaturated fatty acids. Previous studies showed that DSF from S. maltophilia leads to altered biofilm formation and increased tolerance to antibiotics in P. aeruginosa and that these responses require the P. aeruginosa sensor kinase PA1396. The work in this thesis aims of further elucidate the influence and mechanism of DSF signalling on P. aeruginosa and examine the role that such interspecies signalling play in infection of the CF airway. Next generation sequencing technologies targeting the 16S ribosomal RNA gene were applied to DNA and RNA isolated from sputum taken from cohorts of CF and non-CF subjects to characterise the bacterial community. In parallel, metabolomics analysis of sputum provided insight into the environment of the CF airway. This analysis revealed a number of observations including; that differences in metabolites occur in sputum taken from clinically stable CF patients and those with exacerbation and DNA- and RNA-based methods suggested that a strong relationship existed between the abundance of specific strict anaerobes and fluctuations in the level of metabolites during exacerbation. DSF family signals were also detected in the sputum and a correlation with the presence of DSFproducing organisms was observed. To examine the signal transduction mechanisms used by P. aeruginosa, bioinformatics with site directed mutagenesis were employed to identify signalling partners for PA1396. A pathway suggesting a role for a number of proteins in the regulation of several factors following DSF recognition by PA1396 were observed.